CHAPTER 2

The Complexity of Finding
Nash Equilibria

Christos H. Papadimitriou

Abstract

Computing a NAsH equilibrium, given a game in normal form, is a fundamental problem for Algo-
rithmic Game Theory. The problem is essentially combinatorial, and in the case of two players it
can be solved by a pivoting technique called the Lemke—Howson algorithm, which however is ex-
ponential in the worst case. We outline the recent proof that finding a NAsH equilibrium is complete
for the complexity class PPAD, even in the case of two players; this is evidence that the problem is
intractable. We also introduce several variants of succinctly representable games, a genre important
in terms of both applications and computational considerations, and discuss algorithms for correlated
equilibria, a more relaxed equilibrium concept.

2.1 Introduction

NasH’s theorem — stating that every finite game has a mixed NAsH equilibrium (Nash,
1951) —is a very reassuring fact: Any game can, in principle, reach a quiescent state,
one in which no player has an incentive to change his or her behavior. One question
arises immediately: Can this state be reached in practice? Is there an efficient algorithm
for finding the equilibrium that is guaranteed to exist? This is the question explored in
this chapter.

But why should we be interested in the issue of computational complexity in con-
nection to NASH equilibria? After all, a NASH equilibrium is above all a conceptual
tool, a prediction about rational strategic behavior by agents in situations of conflict —
a context that is completely devoid of computation.

We believe that this matter of computational complexity is one of central importance
here, and indeed that the algorithmic point of view has much to contribute to the debate
of economists about solution concepts. The reason is simple: If an equilibrium concept
is not efficiently computable, much of its credibility as a prediction of the behavior
of rational agents is lost — after all, there is no clear reason why a group of agents
cannot be simulated by a machine. Efficient computability is an important modeling

29



30 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

perequisite for solution concepts. In the words of Kamal Jain, “If your laptop cannot
find it, neither can the market.”!

2.1.1 Best Responses and Supports

Let us thus define NAsH to be the following computational problem: Given a game
in strategic form, find a NASH equilibrium. Since NAsH calls for the computation
of a real-valued distribution for each player, it seems primae facie to be a quest in
continuous mathematics. However, a little thought reveals that the task is essentially
combinatorial.

Recall that a mixed strategy profile is a NASH equilibrium if the mixed strategy
of each player is a best response to the mixed strategies of the rest; that is, it attains
the maximum possibly utility among all possible mixed strategies of this player. The
following observation is useful here (recall that the support of a mixed strategy is the
set of all pure strategies that have nonzero probability in it).

Theorem 2.1 A mixed strategy is a best response if and only if all pure strategies
in its support are best responses.

To see why, assume for the sake of contradiction that a best response mixed strategy
contains in its support a pure strategy that is not itself a best response. Then the utility of
the player would be improved by decreasing the probability of the worst such strategy
(increasing proportionally the remaining nonzero probabilities to fill the gap); this
contradicts the assumption that the mixed strategy was a best response. Conversely, if
all strategies in all supports are best responses, then the strategy profile combination
must be a NASH equilibrium.

This simple fact reveals the subtle nature of a mixed NASH equilibrium: Players
combine pure best response strategies (instead of using, for the same utility, a single
pure best response) in order to create for other players a range of best responses that
will sustain the equilibrium!

Example 2.2 Consider the symmetric game with two players captured by the

matrix

030
A=1003
222
A game with two players can be represented by two matrices (A, B) (hence the
term bimatrix game often used to describe such games), where the rows of A are
the strategies of Player 1 and the columns of A are the strategies of Player 2,
while the entries are the utilities of Player 1; the opposite holds for matrix B. A
bimatrix game is called symmetric if B = AT i.e., the two players have the same
set of strategies, and their utilities remain the same if their roles are reversed.

In the above symmetric game, consider the equilibrium in which both play-
ers play the mixed strategy (0, 1/3,2/3). This is a symmetric NASH equilibrium,

! One may object to this aphorism on the basis that in markets agents work in parallel, and are therefore more
powerful than ordinary algorithms; however, a little thought reveals that parallelism cannot be the cure for
exponential worst case.



IS THE Nash EQUILIBRIUM PROBLEM NP-COMPLETE? 31

because both players play the same mixed strategy. (A variant of NASH’S proof
establishes that every symmetric game, with any number of players, has a sym-
metric equilibrium — it may also have nonsymmetric ones.) We can check whether
it is indeed an equilibrium, by calculating the utility of each strategy, assuming
the opponent plays (0, 1/3, 2/3): The utilities are 1 for the first strategy, and 2
for the other two. Thus, every strategy in the support (i.e., either of strategies 2
and 3) is a best response, and the mixed strategy is indeed a NASH equilibrium.
Note that, from Player 1’s point of view, playing just strategy 2, or just strategy 3,
or any mixture of the two, is equally beneficial to the equilibrium mixed strategy
(0, 1/3,2/3). The only advantage of following the precise mix suggested by the
equilibrium is that it motivates the other player to do the same.

Incidentally, in our discussion of NASH equilibria in this chapter, we shall often
use the simpler two-player case to illustrate the ideas. Unfortunately, the main
result of this section says that two-player games are not, in any significant sense,
easier than the general problem.

It also follows from these considerations that finding a mixed NASH equilibrium
means finding the right supports: Once one support for each player has been identified,
the precise mixed strategies can be computed by solving a system of algebraic equations
(in the case of two players, linear equations): For each player i we have a number of
variables equal to the size of the support, call it k;, one equation stating that these
variables add to 1, and k; — 1 others stating that the k; expected utilities are equal.
Solving this system of ) ; k; equations in ) ; k; unknowns yields k; numbers for
each player. If these numbers are real and nonnegative, and the utility expectation is
maximized at the support, then we have discovered a mixed NASH equilibrium.

In fact, if in the two-player case the utilities are integers (as it makes sense to assume
in the context of computation), then the probabilities in the mixed NASH equilibrium
will necessarily be rational numbers, since they constitute the solution of a system of
linear equations with integer coefficients. This is not true in general: NASH’S original
paper (1951) includes a beautiful example of a three-player poker game whose only
NAsH equilibrium involves irrational numbers.

The bottom line is that finding a Nasu equilibrium is a combinatorial problem: It
entails identifying an appropriate support for each player. Indeed, most algorithms
proposed over the past half century for finding NASH equilibria are combinatorial in
nature, and work by seeking supports. Unfortunately, none of them are known to be
efficient — to always succeed after only a polynomial number of steps.

2.2 Is the Nasu Equilibrium Problem NP-Complete?

Computer scientists have developed over the years notions of complexity, chief among
them NP-completeness (Garey and Johnson, 1979), to characterize computational prob-
lems which, just like NasH and SATISFIABILITY,? seem to resist efficient solution. Should
we then try to apply this theory and prove that NAsH is NP-complete?

2 Recall that SATISFIABILITY is the problem that asks, given a Boolean formula in conjunctive normal form, to
find a satisfying truth assignment.



32 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

It turns out that NAsH is a very different kind of intractable problem, one for which
NP-completeness is not an appropriate concept of complexity. The basic reason is
that every game is guaranteed to have a NAsH equilibrium. In contrast, in a typical
NP-complete problem such as SATISFIABILITY, the sought solution may or may not
exist. NP-complete problems owe much of their difficulty, and their susceptibility to
NP-completeness reductions, to precisely this dichotomy.? For, suppose that NAsH is
NP-complete, and there is a reduction from SATISFIABILITY to NASH. This would entail
an efficiently computable function f mapping Boolean formulae to games, and such
that, for every formula ¢, ¢ is satisfiable if and only if any NASH equilibrium of f(¢)
satisfies some easy-to-check property I1. But now, given any unsatisfiable formula ¢,
we could guess a NasH equilibrium of f(¢), and check that it does not satisfy IT: This
implies NP = coNP!

Problems such as NasH for which a solution is guaranteed to exist require much
more specialized and subtle complexity analysis — and the end diagnosis is necessar-
ily less severe than NP-completeness (see Beame et al., 1998; Johnson et al., 1988;
Papadimitriou, 1994 for more on this subject).

2.2.1 NaSsH vs Brouwer

In contemplating the complexity of NAsH, a natural first reaction is to look into NASH’S
proof (1951) and see precisely how existence is established — with an eye towards
making this existence proof “constructive.” Unfortunately this does not get us very
far, because NASH’s proof relies on Brouwer’s fixpoint theorem, stating that every
continuous function f from the n-dimensional unit ball to itself has a fixpoint: a point
x such that f(x) = x. NAsH’s proof is a clever reduction of the existence of a mixed
equilibrium to the existence of such a fixpoint. Unfortunately, Brouwer’s theorem is
well-known for its nonconstructive nature, and finding a Brouwer fixpoint is known to
be a hard problem (Hirsch et al., 1989; Papadimitriou, 1994) — again, in the specialized
sense alluded to above, since a solution is guaranteed to exist here also.

Natural next question: Is there a reduction in the opposite direction, one establishing
that NAsH is precisely as hard as the known difficult problem of finding a Brouwer fix-
point? The answer is “yes,” and this is in fact a useful alternative way of understanding
the main result explained in this chapter.*

2.2.2 NP-Completeness of Generalizations

As we have discussed, what makes NP-completeness inappropriate for NAsH is the
fact that NASH equilibria always exist. If the computational problem NAsH is twisted

3 But how about the traveling salesman problem? Does it not always have a solution? It does, but this solution
(the optimum tour) is hard to verify, and so the TSP is not an appropriate comparison here. To be brought into
the realm of NP-completeness, optimization problems such as the TSP must be first transformed into decision
problems of the form “given a TSP instance and a bound B, does a tour of length B or smaller exist?” This
problem is much closer to SATISFIABILITY.

4 This may seem puzzling, as it seems to suggest that Brouwer’s theorem is also of a combinatorial nature. As
we shall see, in a certain sense indeed it is.



THE LEMKE—HOWSON ALGORITHM 33

in any one of several simple ways that deprive it from its existence guarantee, NP-
completeness comes into play almost immediately.

Theorem 2.3 (Gilboa and Zemel, 1989) The following are NP-complete prob-
lems, even for symmetric games: Given a two-player game in strategic form, does
it have

e at least two Nasu equilibria?
e a Nasu equilibrium in which player 1 has utility at least a given amount?

e a Nasu equilibrium in which the two players have total utility at least a given
amount?

e a Nasu equilibrium with support of size greater than a given number?
e a Nasu equilibrium whose support contains strategy s?
e a Nasu equilibrium whose support does not contain strategy s?

e elc., etc.

A simple proof, due to (Conitzer and Sandholm, 2003), goes roughly as follows:
Reduction from SATISFIABILITY. It is not hard to construct a symmetric game whose
strategies are all literals (variables and their negations) and whose NASH equilibria are
all truth assignments. In other words, if we choose, for each of the n variables, either the
variable itself or its negation, and play it with probability % then we get a symmetric
NasH equilibrium, and all NAsH equilibria of the game are of this sort. It is also easy to
add to this game a new pure NAsH equilibrium (d, d), with lower utility, where d (for
“default”) is a new strategy. Then you add new strategies, one for each clause, such
that the strategy for clause C is attractive, when a particular truth assignment is played
by the opponent, only if all three literals of C are contradicted by the truth assignment.
Once a clause becomes attractive, it destroys the assignment equilibrium (via other
strategies not detailed here) and makes it drift to (d, d). It is then easy to establish that
the NAsH equilibria of the resulting game are precisely (d, d) plus all satisfying truth
assignments. All the results enumerated in the statement of the theorem, and more,
follow very easily.

2.3 The Lemke-Howson Algorithm

We now sketch the Lemke—Howson algorithm, the best known among the combinatorial
algorithms for finding a NAsH equilibrium (this algorithm is explained in much more
detail in the next chapter). It works in the case of two-player games, by exploiting
the elegant combinatorial structure of supports. It constitutes an alternative proof of
NAsH’s theorem, and brings out in a rather striking way the complexity issues involved
in solving NAsH. Its presentation is much simpler in the case of symmetric games. We
therefore start by proving a basic complexity result for games: looking at symmetric
games is no loss of generality.



34 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

2.3.1 Reduction to Symmetric Games

Define SYMMETRIC NASH to be the following problem: Given a symmetric game, find
a symmetric NASH equilibrium. As noted above, NAsH proved in his original paper
that such equilibrium always exists. Here we establish the following fact, which was
actually first pointed out before NASH’S paper, in Gale et al., 1950 essentially with the
same proof, for the case of two-player zero-sum games:

Theorem 2.4 There is a polynomial reduction from NASH t0 SYMMETRIC NASH.

Thus the symmetric case of NASH is as hard as the general one.

We shall describe the reduction for the two-player case, the proof for any fixed
number of players being a straightforward generalization. Suppose that we are given
a two-player game described by matrices A and B; without loss of generality, assume
that all entries of these matrices are positive (adding the same number to all entries of
A or B changes nothing). Consider now the symmetric game consisting of this matrix:

C = < I;) T 13) and let (x, y) be a symmetric equilibrium of this game (by x we denote

the first m components of the vector, where m is the number of rows of A, and by y
the rest). It is easy to see that, for (x, y) to be a best response to itself, y must be a best
response to x, and x must be a best response to y. Hence, x and y constitute a NASH
equilibrium of the original game, completing the proof.

Incidentally, it is not known how hard it is to find any NASH equilibrium in a
symmetric game (it could be easier than NASH), or to find a nonsymmetric equilibrium
in a symmetric game (it could be easier or harder than NASH).

2.3.2 Pivoting on Supports

So, let us concentrate on finding a NASH equilibrium in a symmetric two-player game
with n x n utility matrix A, assumed with no loss of generality to have nonnegative
entries and in addition no column that is totally zero. Consider the convex polytope
P defined by the 2n inequalities Az < 1,z > 0 (it turns out that these inequalities
are important in identifying mixed NASH equilibria, because, intuitively, when an
inequality from A;x < 1 is tight, the corresponding strategy is a best response). It is
a nonempty, bounded polytope (since z = 0 is a solution, and all coefficients of A are
nonnegative while no column is zero). Let us assume for simplicity that the polytope P
is also nondegenerate, that is, every vertex lies on precisely n constraints (every linear
program can be made nondegenerate by a slight perturbation of its coefficients, so this
is little loss of generality). We say that a strategy i is represented at a vertex z if at that
vertex either z; = 0 or A;z = 1 or both — that is, if at least one of the two inequalities
of the polytope associated with strategy i is tight at z.

Suppose that at a vertex z all strategies are represented. This of course could happen
if z is the all-zero vertex — but suppose it is not. Then for all strategies i with z; > 0 it
must be the case that A;z = 1. Define now a vector x as follows:

Zi

D i1 T .

Xi =



THE LEMKE—HOWSON ALGORITHM 35

X1
232
223
132
123
123 122
X 123 123 X3

Figure 2.1. The Lemke—Howson algorithm can be thought of as following a directed path in a
graph.

Since we assume z # 0, the x;’s are well defined, and they are nonnegative numbers

adding to 1, thus constituting a mixed strategy. We claim that x is a symmetric NASH

equilibrium. In proof, just notice that x satisfies the necessary and sufficient condition

of a NAsH equilibrium (recall Theorem): Every strategy in its support is a best response.
Let us apply this to the symmetric game of Example 2.2, with utility matrix

030
A=1]1003
222

The polytope P is shown in Figure 2.1; it is nondegenerate because every vertex
lies on three planes, and has three adjacent vertices. The vertices are labeled by the
strategies that are represented there (ignore the exponents > for a moment). The only
vertices where all strategies are represented are the vertex z = (0, 0, 0) and the vertex
z =10, 1/6, 1/3) — notice that the latter vertex corresponds to the NASH equilibrium
x =(0,1/3,2/3).

So, any vertex of P (other than (0, 0, 0)) at which all strategies are represented is a
NasH equilibrium. But how do we know that such a vertex exists in general? After all,
not all choices of n tight constraints result in vertices of a polytope. We shall develop
a pivoting method for looking for such a vertex.

Fix a strategy, say strategy n, and consider the set V of all vertices of P at which all
strategies are represented except possibly for strategy n. This set of vertices is nonempty,
because it contains vertex (0, 0, 0), so let us start there a path (vg = 0, vy, vp,...) of
vertices in the set V. Since we assume that P is nondegenerate, there are n vertices
adjacent to every vertex, and each is obtainable by relaxing one of the tight inequalities
at the vertex and making some other inequality tight. So consider the n vertices adjacent
to vy = (0, 0, 0). In one of these vertices, z, is nonzero and all other variables are zero,
so this new vertex is also in V; call it v;.



36 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

Y

Figure 2.2. The path cannot cross itself.

At vp all strategies are represented except for strategy n, and in fact one strategy
i < n is “represented twice,” in that we have both z; = 0 and C;z = 1. (We represent
this by i?). By relaxing either of these two inequalities we can obtain two new vertices
in V adjacent to v;. One of them is vy, the vertex we came from, and the other is bound
to be some new vertex v, € V.

If at v, all strategies are represented, then it is a NASH equilibrium and we are done.
Otherwise, there is a strategy j that is represented twice at v, and there are two vertices
in V that are adjacent to v, and correspond to these two inequalities. One of these two
vertices is v; and the other is our new vertex vz, and so on. The path for the example
of Figure 2.1 where strategy n = 3 is the one that may not be represented, is shown as
a sequence of bold arrows.

How can this path end? No vertex v; can be repeated, because repeating v; (see
Figure 2.2) would mean that there are three vertices adjacent to v; that are obtainable
by relaxing a constraint associated with its doubly represented strategy, and this is
impossible (it is also easy to see that it cannot return to 0). And it cannot go on forever,
since P is a finite polytope. The only place where the process can stop is at a vertex in
V, other than 0 (a moment’s thought tells us it has to be different from 0) that has no
doubly represented strategy — that is to say, at a symmetric Nasu equilibrium!

This completes our description of the Lemke—Howson algorithm, as well as our
proof of NAsH’s theorem for two-player, nondegenerate games.

2.4 The Class PPAD

Let us dissect the existence proof in the previous section. It works by creating a graph.
The set of vertices of this graph, V, is a finite set of combinatorial objects (vertices of P,
or sets of inequalities, where all strategies are represented, with the possible exception
of strategy n). This graph has a very simple “path-like” structure: All vertices have
either one or two edges incident upon them — because every vertex v € V has either
one or two adjacent vertices (depending on whether or not strategy n is represented in
v). The overall graph may be richer than a path — it will be, in general, a set of paths
and cycles (see Figure 2.3). The important point is that there is definitely at least one
known endpoint of a path: the all-zero vertex. We must conclude that there is another
endpoint, and this endpoint is necessarily a NAsH equilibrium of the game.

We must now mention a subtle point: the paths are directed. Looking at a vertex in
V', we can assign a direction to its incident edge(s), at most one coming in and at most



THE CLASS PPAD 37

Standard
source Q

Figure 2.3. A typical problem in PPAD.

one going out, and do this in a way that is consistent from one vertex to another. In
our three-dimensional example of Figure 2.1 the rule for asigning directions is simple:
Going in the direction of the arrow, we should have a face all vertices of which are
labeled 3 on our right, and a face all vertices of which are labeled 1 on our left. In games
with more strategies, and thus a polytope of a higher dimension, there is a similar but
more complicated (and more algebraic) “orientation rule.” So, the graph in the proof
of NasH’s Theorem is a directed graph with all outdegrees and indegrees at most one.

What we mean to say here is that the existence proof of NAsH’s theorem (for the two-
player symmetric, nondegenerate case, even though something similar holds for the
general case as well) has the following abstract structure: A directed graph is defined on
a set of nodes that are easily recognizable combinatorial objects (in our case, vertices
of the polytope where all strategies, with the possible exception of strategy n, are repre-
sented). Each one of these vertices has indegree and outdegree at most one; therefore, the
graph is a set of paths and cycles (see Figure 2.3). By necessity there is one vertex with
no incoming edges and one outgoing edge, called a standard source (in the case of two-
player NASH, the all-zero vertex). We must conclude that there must be a sink: a NASH
equilibrium. In fact, not just a sink: notice that a source other than the standard (all-zero)
one is also a NASH equilibrium, since all strategies are represented there as well. An-
other important point is that there is an efficient way, given a vertex in the graph to find
its two adjacent vertices (or decide that there is only one). This can be done by simplex
pivoting on the doubly represented variable (or on variable n, if it is represented).

Any such proof suggests a simple algorithm for finding a solution: start from the
standard source, and follow the path until you find a sink (in the case of two-player
NasH this is called the Lemke—Howson algorithm). Unfortunately, this is not an efficient
algorithm because the number of vertices in the graph is exponentially large. Actually,
in the case of two-player NASH there are examples of games in which such paths are
exponentially long (Savani and von Stengel, 2004).



38 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

It turns out that, besides NASH, there is a host of other computational problems with
guaranteed existence of solutions, for which existence follows from precisely this type
of argument:

¢ A directed graph is defined on a finite but exponentially large set of vertices.

¢ Each vertex has indegree and outdegree at most one.

¢ Given a string, it is a computationally easy problem to (a) tell if it is indeed a vertex of
the graph, and if so to (b) find its neighbors (one or two of them), and to (c) tell which
one is the predecessor and/or which one is the successor (i.e., identify the direction of
each edge).

¢ There is one known source (vertex with no incoming edges) called the “standard source.”

¢ Any sink of the graph (a vertex with no outgoing edges), or any source other than the
standard one, is a solution of the problem.

One problem whose existence proof has this form is finding an approximate Brouwer
fixpoint of a function. We omit the precise definition and representation details here;
a stylized version of this problem is defined in Section 2.6. Another is the following
problem called HAM SANDWITCH: Given n sets of 2n points each in n dimensions, find
a hyperplane which, for each of the n sets, leaves n points on each side. There are
many other such problems (see Papadimitriou, 1994). For none of these problems do
we know a polynomial algorithm for finding a solution.

All these problems comprise the complexity class called PPAD. In other words,
PPAD is the class of all problems, whose solution space can be set up as the set of
all sinks and all nonstandard sources in a directed graph with the properties displayed
above.

Solving a problem in PPAD is to telescope the long path and arrive at a sink (or
a nonstandard source), fast and without rote traversal — just as solving a problem in
NP means narrowing down to a solution among the exponentially many candidates
without exhaustive search. We do not know whether either of these feats is possi-
ble in general. But we do know that achieving the latter would imply managing the
former too. That is, P = NP implies PPAD = P (proof: PPAD is essentially a sub-
set of NP, since a solution, such as a NasH equilibrium, can be certified quickly if
found).

In the case of NP, we have a useful notion of difficulty — NP-completeness — that
helps characterize the complexity of difficult problems in NP, even in the absence of
a proof that P # NP. A similar manoeuvre is possible and useful in the case of PPAD
as well. We can advance our understanding of the complexity of a problem such as
NasH by proving it PPAD-complete — meaning that all other problems in PPAD reduce
to it. Such a result implies that we could solve the particular problem efficiently if
and only if all problems in PPAD (many of which, like BROUWER, are well-known
hard nuts that have resisted decades of efforts at an efficient solution) can be thus
solved.

Indeed, the main result explained in the balance of this chapter is a proof that NAsH
is PPAD-complete.

3 The name, introduced in Papadimitriou (1994), stands for “polynomial parity argument (directed case).” See
that paper, as well as Beame et al. (1998) and Daskalakis et al. (2006), for a more formal definition.



SUCCINCT REPRESENTATIONS OF GAMES 39

2.4.1 Are PPAD-Complete Problems Hard?

But why do we think that PPAD-complete problems are indeed hard? PPAD-
completeness is weaker evidence of intractability than NP-completeness: it could
very well be that PPAD = P # NP. Yet it is a rather compelling argument for in-
tractability. If a PPAD-complete problem could be solved in polynomial time, then all
problems in PPAD (finding Brouwer and Borsuk-Ulam fixpoints, cutting ham sand-
wiches, finding Arrow-Debreu equilibria in markets, etc., many of which have resisted
decades of scrutiny, see Papadimitriou (1994) for a more complete list) would also
be solved. It would mean that any local combinatorial description of a deterministic
simplex pivoting rule would lead to a novel polynomial algorithm for linear pro-
gramming. Besides, since it is known (Hirsch et al., 1989) that any algorithm for
finding Brouwer fixpoints that treats the function as a black box must be exponential,
PPAD = P would mean that there is a way to find Brouwer fixpoints by delving into
the detailed properties of the function — a possibility that seems quite counterintu-
itive. Also, an efficient algorithm for a PPAD-complete problem would have to defeat
the oracles constructed in Beame et al. (1998) — computational universes in which
PPAD # P — and so it would have to be extremely sophisticated in a very specific
sense.

In mathematics we must accept as a possibility anything whose negation remains
unproved. PPAD could very well be equal to P, despite the compelling evidence to the
contrary outlined above. For all we know, it might even be the case that P = NP —
in which case PPAD, lying “between” P and NP, would immediately be squeezed
down to P as well. But it seems a reasonable working hypothesis that neither of these
eventualities will actually hold, and that by proving a problem PPAD-complete we
indeed establish it as an intractable problem.

2.5 Succinct Representations of Games

Computational problems have inputs, and the input to NASH is a description of the
game for which we need to find an equilibrium. How long is such a description?

Describing a game in strategic form entails listing all utilities for all players and
strategy combinations. In the case of two players, with m and n strategies respectively,
this amounts to describing 2mn numbers. This makes the two-player case of NASH
such a very neat and interesting computational problem.

But we are interested in games because we think that they can model the Internet,
markets, auctions — and these have far more than two players. Suppose that we have a
game with n players, and think of n as being in the hundreds or thousands — a rather
modest range for the contexts and applications outlined above. Suppose for simplicity
that they all have the same number of strategies, call it s — in any nontrivial game s will
be at least two. Representing the game now requires ns" numbers!

This is a huge input. No user can be expected to supply it, and no algorithm to handle
it. Furthermore, the astronomical input trivializes complexity: If s is a small number
such as 2 or 5, a trivial efficient algorithm exists: try all combinations of supports.
But this algorithm is “efficient” only because the input is so huge: For fixed s, (2°)" is
polynomial in the length of the input, ns” . ..



40 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

Conclusion: In our study of the complexity of computational problems for games
such as NAsSH we must be especially interested in games with many players; however,
only succinctly representable multiplayer games can be of relevance and computational
interest.

And there are many such games in the literature; we start by describing one of the
latest arrivals (Kearns et al., 2001) that happens to play a central role in our story.

2.5.1 Graphical Games

Suppose that many players are engaged in a complex game; yet, the utility of each
player depends on the actions of very few other players. That is, there is a directed
graph ({1, 2, ..., n}, E), with vertices the set of players, and (i, j) € E only if the
utility of j depends on the strategy chosen by i (j’s utility depends, of course, on the
strategy chosen by j). More formally, for any two strategy profiles s and s” if s; = s;,
and, for all (i, j) € E we have s; = s/, then u;(s) = u;(s"). A graphical game, as these
are called, played on a graph with n nodes and indegree at most d, and s choices per
player, requires only ns%*! numbers for its description — a huge savings over ns" when
d is modest. (For more on graphical games, see Chapter 7.)

For a simple example, consider a directed cycle on 20 players, where the utilities are
captured by the game matrix A of example 2.2. That is, if a player chooses a strategy
i € {1, 2,3} and his predecessor in the cycle chooses another strategy j, then the utility
of the first player is C;; (the utility of the predecessor will depend on the strategy
played by his predecessor). Ordinarily, this game would require 20 x 3?° numbers to
be described; its graph structure reduces this to just a few bytes.

Can you find a NAsH equilibrium in this game?

2.5.2 Other Succinct Games

There are many other computationally meaningful ways of representing some interest-
ing games succinctly. Here are some of the most important ones.

(i) Sparse games. If very few of the ns" utilities are nonzero, then the input can be
meaningfully small. Graphical games can be seen as a special case of sparse games,
in which the sparsity pattern is captured by a graph whose vertices are the players.

(ii) Symmetric games. In a symmetric game the players are all identical. So, in evaluating

the utility of a combination of strategies, what matters is how many of the n players
n+sfl)

play each of the s strategies. Thus, to describe such a game we need only s( 1

numbers.

(iii) Anonymous games. This is a generalization of symmetric games, in which each player
is different, but cannot distinguish between the others, and so again his or her utility
depends on the partition of the other players into strategies. sn (":r: 1) numbers suffice
here.

(iv) Extensive form games. These are given as explicit game trees (see the next chapter).
A strategy for a player is a combination of strategies, one for each vertex in the
game tree (information set, more accurately, see the next chapter for details) in which
the player has the initiative. The utility of a strategy combination is that of the leaf
reached if the strategies are followed.



THE REDUCTION 41

(v) Congestion games. These games abstract the network congestion games studied in
Chapters 18 and 19. Suppose that there are n players, and a set of edges E. The set of
strategies for each player is a set of subsets of E, called paths. For each edge e € E
we have a congestion function c, mapping {0, 1, ..., n} to the nonnegative integers.
If the n players choose strategies/paths P = (P;, ..., P,), letthe load of edge e, £(P)
be the size of the set {i : e € P;}. Then the utility of the ith player is Zeepi c.(L(P)).

(vi) There is the even more succinct form of network congestion games, where E is the
set of edges of an actual graph, and we are given two vertices for each player. The
strategies available to a player are all simple paths between these two nodes.

(vii) Local effect games. These are generalizations of the congestion games, see Leyton-
Brown and Tennenholtz 2003.
(viii) Facility location games. See Chapter 19.

(ix) Multimatrix games. Suppose that we have n players with m strategies each, and for
each pair (i, j) of players an m x m utility matrix A"/, The utility of player i for the
strategy combination sy, . .., §,) is Z_,' 4i A’“’ e That is, each player receives the total
sum of his or her interactions with all other players.

2.6 The Reduction

In this section we give a brief sketch of the reduction, recently discovered in Daskalakis
et al. (2006) and Goldberg and Papadimitriou (2006) and extended to two-player games
in Chen and Deng (2005b), which establishes that NAsH is PPAD-complete.

2.6.1 A PPAD-Complete Problem

The departure point of the reduction is BROUWER, a stylized discrete version of the
Brouwer fixpoint problem. It is presented in terms of a function ¢ from the three-
dimensional unit cube to itself. Imagine that the unit cube is subdivided into 2*" equal
cubelets, each of side ¢ = 27", and that the function need only be described at all
cubelet centers. At a cubelet center x, ¢(x) can take four values: x +6;,i =0, ..., 3,
where the §;s are the following tiny displacements mapping the center of the cubelet to
the center of a nearby cubelet: 6; = (¢, 0, 0) 6, = (0, €, 0), §3 = (0, 0, €), and finally
8o = (—€, —e, —e€). If x is the center of a boundary cubelet, then we must make sure
that ¢(x) does not fall outside the cube — but this is easy to check. We are seeking
a “fixpoint,” which is defined here to be any internal cubelet corner point such that,
among its eight adjacent cubelets, all four possible displacements §;,i =0, ..., 3, are
present.

But how is the function ¢ represented? We assume that ¢ is given in terms of a
Boolean circuit, a directed acyclic graph of AND, OR, and NOT gates, with 3n bits as
inputs (enough to describe the cublet in question) and two bits as outputs (enough to
specify which one of the four displacements is to be applied). This is a computationally
meaningful way of representing functions that is quite common in the complexity theory
literature; any function ¢ of the sort described above (including the boundary checks)
can be captured by such a circuit. And this completes the description of BROUWER, our
starting PPAD-complete problem: Given a Boolean circuit describing ¢, find a fixpoint



42 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

of ¢. We omit the challenging proof that it is indeed PPAD-complete (see Daskalakis
et al., 2006).

2.6.2 The Plan

But how should we go about reducing this problem to NasH? We shall start by reduc-
ing BROUWER to an intermediate graphical game with many players. All these players
have just two strategies, 0 and 1; therefore, we can think of any mixed strategy of a
player as a number in [0, 1] (the probability he or she assigns to strategy 1). Three
of these players will be thought of as choosing three numbers that are the coordi-
nates of a point in the cube. Others will respond by analyzing these coordinates to
identify the cubelet wherein this point lies, and by computing (by a simulation of the
circuit) the displacements §; at the cubelet and adjacent cubelets. The resulting choices
by the players will incentivize the three original players to change their mixed strategy
— unless the point is a fixpoint of ¢, in which case the three players will not change
strategies, and the graphical game will be at a NASH equilibrium!

2.6.3 The Gadgets

To carry out this plan, we need certain devices — commonly called “gadgets” in the
reduction business — for performing basic arithmetic and logical operations. That is, we
need to define certain small graphical games with players that are considered as inputs
and another player as output, such that in any NAsH equilibrium the mixed strategy of
the output player (thought of as a real number between 0 and 1) stands in a particular
arithmetical or logical relation with the inputs (again, thought of as numbers).

Consider, for example, the multiplication game. It has four players, two input players
a and b, an output player ¢, and a middle player d. The underlying directed graph has
edges (a, d), (b,d), (c,d), (d, ¢); i.e., one of these four players affects the utility of
another if and only if there is an edge in this list from the former to the latter. The players
have two strategies each, called 0 and 1, so that any mixed strategy profile for a player
is in fact a real number in [0, 1] (the probability with which the player plays strategy 1).
The utilities are so constructed that in any NASH equilibrium of this game, the output is
always the product of the two inputs — all seen as numbers, of course: ¢ = a - b (here
we use a to represent not just player a, but also its value, i.e., the probability with
which he plays strategy 1). To specify the game, we need to describe the utilities of
the output and middle player (the utilities of the inputs are irrelevant since they have
no incoming edges; this is crucial, because it allows the inputs to be “reused” in many
gadgets, without one use influencing the others). If the middle player d plays 1 (recall
that all nodes have two strategies, 1 and 0), then its utility is 1 if both inputs play 1,
and it is O zero otherwise. Thus, if the two input players play 1 with probabilities a and
b (recall that these are the “values” of the two inputs), and the middle player plays 1,
then his utility is exactly a - b. If on the other hand the middle player plays 0, then its
utility is 1 if the output player plays 1, and it is O otherwise. Finally, the output player
gets utility 1 if the middle player plays 1, and —1 if he plays O.

Thus, the output player is motivated to play 1 with probability ¢, which is as high as
possible, in order to maximize the utility from the middle player’s playing 1 — but not



THE REDUCTION 43

so high that the middle player is tempted to play 0, as he would whenever ¢ > a - b.
Thus, at equilibrium, ¢ must be exactly a - b, and the multiplication gadget works!

In a similar manner we can construct gadgets that add and subtract their inputs
(always within the range [0, 1], of course), or perform certain logical operations. For
example, it is a trivial exercise to design a gadget with two nodes, an input x and
an output y, such that y =1 if x > % and y=0if x < % (notice that, importantly,
the output of this comparator is undetermined is x = %). It is also easy to design
gadgets that perform AND, OR, and NOT operations on their inputs (the inputs here
are assumed to be Boolean, that is to say, pure strategies).

2.6.4 The Graphical Game

Using these devices, we can put together a graphical game whose NASH equilibria
reflect accurately the Brouwer fixpoints of the given function ¢.

The graphical game is huge, but has a simple structure: There are three players, called
the leaders, whose mixed strategies identify a point (x, y, z) in the unit cube. These
leaders are inputs to a series of comparators and subtractors which extract one by one
the n most significant bits of the binary representation of x, y, and z, thus identifying
the cubelet within which the point (x, y, z) lies. A system of logical gadgets could
then compute the outputs of the given circuit that describes ¢, when the inputs are the
3n extracted bits, repeat for the neighboring cubelets, and decide whether we are at a
fixpoint.

But there is a catch: As we pointed out above, our comparators are “brittle” in that
they are indeterminate when their input is exactly half. This is of necessity: It can
be shown (see Daskalakis et al., 2006) that nonbrittle comparators (ones that behave
deterministically at half) cannot exist! (It turns out that, with such comparators, we
could construct a graphical game with no NAsH equilibrium . ..) This has the effect
that the computation described above is imprecise (and, in fact, in an unpredictable
manner) when the point (x, y, z) lies exactly on the boundary of a cubelet, and this can
create spurious equilibria. We must somehow “smoothen” this discontinuity.

This is accomplished by a more complicated construction, in which the calculation
of ¢ is carried out not for the single point (x, y, z) but for a large and very fine grid of
points around it, with all results averaged.

Once the average displacement (Ax, Ay, Az) near (x, y, z) has been calculated, its
components are added to the three leaders, completing the construction of the graphical
game. This way the loop is closed, and the leaders (who had heretofore no incoming
edges) are finally affected — very indirectly, of course — by their own choices. We
must now prove that the NASH equilibria of this game correspond precisely to those
points in the unit cube for which the average displacement is the zero vector. And
from this, establish that the average displacement is zero if and only if we are near a
fixpoint.

2.6.5 Simulating the Graphical Game by Few Players

We have already established an interesting result: Finding a NAsH equilibrium in a
graphical game is PPAD-complete. It is even more interesting because the underlying



44 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

directed graph of the game, despite its size and complexity, has a rather simple
structure: It is bipartite, and all vertices have indegree three or less. It is bipartite
because all gadgets are bipartite (the inputs and the outputs are on one side, the middle
nodes on the other; the logical gadgets can be redesigned to have a middle node as
well); and the way the gadgets are put together maintains the bipartite property. Finally,
the middle nodes of the gadget are the ones of maximum indegree — three.

The challenge now is to simulate this graphical game by one with finitely many
players. Already in Goldberg and Papadimitriou (2006) and Daskalakis et al. (2006), a
simulation by four players was shown, establishing that NAsH is PPAD-complete even
in the four-player case. The idea in the simulation is this: Each of the four players
“represents” many nodes of the graphical game. How players are represented is best
understood in terms of a particular undirected graph associated with the graphical
game, called the conflict graph. This graph is defined on the vertices of the graphical
game, and has an edge between two nodes u and v if in the graphical game either (a)
there is an edge between u and v, in either direction, or (b) there are edges from both u
and v to the same node w. This is the conflict graph of the game; it should be intuitively
clear that eventualities (a) and (b) make it difficult for the same player to represent both
u and v, and so coloring the conflict graph and assigning its color classes to different
players makes sense. The crucial observation is that the conflict graph of the graphical
game constructed in the reduction is four-colorable.

So, we can assign to each of four players (think of them as “lawyers”) all nodes
(call them “clients”) in a color class. A lawyer’s strategy set if the union of the strategy
sets of his clients, and so the clients can be represented fairly if the lawyer plays the
average of their mixed strategies. Since the clients come from a color class of the
conflict graph, the lawyer can represent them all with no conflict of interest (he or she
should not represent two players that play against one another, or two players who
both play against a third one). But there is a problem: A lawyer may neglect some
clients with small payoffs and favor (in terms of weights in his mixed strategy) the
more lucrative ones. This is taken care of by having the four lawyers play, on the side, a
generalization of the “rock-paper-scissors game,” at very high stakes. Since this game
is known to force the players to distribute their probabilities evenly, all clients will
now be represented fairly in the lawyer’s mixed strategy; the four-player simulation is
complete.

These results, up to the four player simulation, first appeared in the beginning of
October 2005 (Goldberg and Papadimitriou, 2006; Daskalakis et al., 2006). It was
conjectured in Daskalakis et al. (2006) that the 3-player case of NAsH is also PPAD-
complete, whereas the 2-player case is in P. Indeed, a few weeks later, two independent
and very different simulations of the graphical game by three players appeared (Chen
and Deng, 2005b; Daskalakis and Papadimitriou, 2005) thus proving the first part
of this conjecture. The proof in Daskalakis and Papadimitriou (2005) was local, and
worked by modifying the gadgets so that the conflict graph became three-colorable;
this approach had therefore reached its limit, because for the graphical game to work
the conflict graph must contain triangles. It was again conjectured in Daskalakis and
Papadimitriou (2005) that the two-player case can be solved in polynomial time. In
contrast, the proof in Chen and Deng (2005b) was more ad hoc and nonlocal, and was
therefore in a sense more open-ended and promising.



CORRELATED EQUILIBRIA 45

A month later, a surprisingly simple two-player simulation was discovered (Chen
and Deng, 2005a), thus establishing that even the two-player case of NAsH is PPAD-
complete! The intuitive idea behind this new construction is that many of the “conflicts
of interest” captured in the conflict graph (in particular, the (b) case of its definition) hap-
pen to be unproblematic in this particular game: The two input nodes of a gadget cannot
effectively “conspire” to improve their lot — and thus they could, in principle, be repre-
sented by the same (carefully programmed) lawyer. Thus, only two players are needed,
corresponding to the two sides of the bipartite graphical game. The construction is now
in fact a little more direct: there is no graph game, and the two players are constructed
ab initio, with the gadgets, as well as the side game of rock—paper—scissors, built in.

2.6.6 Approximate Equilibria

Incidentally, this side game of rock—paper—scissors is the source of another difficulty
that permeates all these proofs, and which we have not yet discussed: It only guarantees
that the lawyers approximately balance the interests of their clients; as a result, the
whole reduction, and the argument at each stage of the construction, must be carried
out in terms of e-approximate Nasn equilibria. An e-approximate NASH equilibrium is a
mixed strategy profile such that no other strategy can improve the payoff by more than
an additive €. (Notice that an e-approximate NASH equilibrium may or may not be near
a true NAsH equilibrium.) It is easy to see, in retrospect, that this use of approximation
is inherently needed: Two-player games always have rational NAsH equilibria, whereas
games with more players may have only irrational ones. Any simulation of the latter
by the former must involve some kind of approximation.

Now that we know that computing NASH equilibria is an intractable problem, com-
puting approximate equilibria emerges as a very attractive compromise. But can it
be done in polynomial time? The reduction described so far shows that it is PPAD-
complete to compute e-approximate NAsH equilibria when € is exponentially small
(smaller than the side of the cubelet in the initial BROUWER problem, or 27" for some
¢ > 0, where n is the number of strategies). Starting from an n-dimensional version
of BROUWER, the result can be strengthened up to an € that is an inverse polynomial,
(n~°) (Chen et al., 20006).

There are some positive algorithmic results known for approximate NASH equilib-
ria: %—approximate NasH equilibria are very easy to compute in two-player games

(Daskalakis et al., in press) and an e-approximate NASH equilibrium can be found in
logn

less than exponential time (more specifically, in time n < ) in arbitrary games (see
Lipton et al., 2003). Discovering polynomial algorithms for computing e-approximate
NasH equilibria for € between these values — possibly for arbitrarily small constant
€ > 0 —remains an important open problem.

2.7 Correlated Equilibria

Consider the symmetric game (often called chicken) with payoffs

(50)



46 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

The payoffs are supposed to capture the situation in which two very macho drivers
speed toward an intersection. Each has two options: Stop or go. There are two pure
equilibria (me and you) and the symmetric mixed equilibrium (1/2, 1/2). These three
NasH equilibria create the following three probability distributions on the pure strategy

0 1\ /0 0)\/[(} 1
proﬁles:( >( )(‘1‘ )
00){1o){l1 1

Consider however the following distribution: <(l) 5) It is not a NASH equilibrium;
in fact, it is easy to see that there are no two mixe%i strategies for the two players that
generate this distribution (in algebraic terms, the matrix is not of rank one). However, it
is a rational outcome of the game, in the following more sophisticated sense: Suppose
that a trusted third party draws from this distribution, and recommends to each player
to play according to the outcome. (Coming back to the drivers story, this solution,
randomizing between (stop, go) and (go, stop) is tantamount to a traffic signal.) If
the lower left box is chosen, e.g., the recommendation is that Player 1 go and Player
2 stop (i.e., green light for Player 1). What is remarkable about this distribution of
recommendations is that it is self-enforcing: If either player assumes that the other will
follow the recommendation, his best bet is to actually follow the recommendation!

This motivates the following definition (Aumann, 1974): A correlated equilibrium is
a probability distribution { p,} on the space of strategy profiles that obeys the following
conditions: For each player i, and every two different strategies j, j’ of i, conditioned
on the event that a strategy profile with j as is strategy was drawn from the distribution,
the expected utility of playing j is no smaller than that of playing j’:

—al

> " (uy — ug)ps; = 0. (CE)

seS_;

(Naturally, we also require that p; > 0 and ) p; = 1.) Here by S_; we denote the
strategy profiles of all players except for i; if s € S_;, sj denotes the strategy profile
in which player i plays j and the others play s. Notice that the inequalities express
exactly the requirement that, if a strategy profile is drawn from the distribution {p;}
and each player is told, privately, his or her own component of the outcome, and if
furthermore all players assume that the others will follow the recommendation, then
the recommendation is self-enforcing.

Notice also the following: If p',i =1,...,n, is a set of mixed strategies of the
players, and we consider the distribution p, induced by it (p; =[], péi) then the
inequalities (CE) state that these mixed strategies constitute a mixed NASH equilibrium!
Indeed, for each i, j, j’, equation (CE) states in this case that, if j is in i’s support, then
it is a best response. (If strategy j is not in the support, then the inequality becomes a
tautology, 0 > 0; if it is in the support, then we can divide by its probability the whole
inequality, and the resulting inequality says that j is best response.) We conclude
that any NASH equilibrium is a correlated equilibrium. In other words, the correlated
equilibrium is a generalization of the NASH equilibrium, allowing the probabilities on
the space of strategy profiles to be correlated arbitrarily. Conversely, NASH equilibrium
is the special case of correlated equilibrium in which p;’s are restricted to come from
a product (uncorrelated) distribution.



CORRELATED EQUILIBRIA 47

For example, in the drivers game, the (CE) inequalities are as follows:

@4 —=5pu+1-0p>0
5=4pu+O0—1)pn=>0
4 —=35pn+0—-0)pn >0
S=—DHpn2+O0—1ppr=>0

A crucial observation now is that the (CE) inequalities are linear in the unknown
variables {p;}, and thus the system (CE) can always be solved efficiently by linear
programming. In fact, we know that these inequalities always have at least one a
solution: The NAsH equilibrium that is guaranteed to exist by NASH’s theorem.

To restate the situation in terms of our concerns in this chapter, the correlated
equilibrium is a computationally benign generalization of the intractable NASH equi-
librium. We can find in polynomial time a correlated equilibrium for any game. In
fact, we can find the correlated equilibrium that optimizes any linear function of the
{ps}’s, such as the expected sum of utilities. For example, in the drivers game, we can
optimize the sum of the players’ expected utilities by maximizing the linear objective

8p11 + 6p12 + 6py; over the polytope defined by the inequalities above. The optimum
1

correlated equilibrium is this: 8) — a traffic light that is red for both one third of

W= W=

the time.

2.7.1 Correlated Equilibria vs NasH Equilibria: The Whole Picture

The polytope defined by the (CE) inequalities in the case of the drivers game is shown
in Figure 2.4 (the fourth dimension, py; = 1 — p1; — p12 — p21, is suppressed in the
geometric depiction). Every point in this polytope is a correlated equilibrium. There

are two pure NASH equilibria (N1 and N2) and one symmetric mied one (N3). The
1 1

1 11
“traffic light” correlated equilibrium C1 = <(l) 6) and the optimum one C2 = { { (3)
2 3
are also shown. Notice that the three NASH equilibria are vertices of the polytope. This
is no coincidence.

Theorem 2.5 In any nondegenerate two-player game, the NASH equilibria are
vertices of the (CE) polytope.

Naturally, not all vertices of the (CE) polytope will be NAsH equilibria, but at
least one will be. In other words, in two-player games every NASH equilibrium is the
optimum correlated equilibrium for some linear function — unfortunately, guessing this
function is apparently not easy.

To recapitulate, NASH equilibria are correlated equilibria satisfying the further con-
straint that they are the product distribution of some pair of mixed strategies. It is
this single additional constraint that makes the problem of finding a NASH equilibrium
so much harder. It is apparently a very nonconvex constraint (think of it as a curved
surface in Figure 2.4, “touching” the (CE) polytope at three of its vertices). In contrast,
for three or more players there are games in which the NASH equilibria are not vertices



48 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

Cl

N2
Py

Figure 2.4. The three NasH equilibria (N1, N2, N3) of the drivers’ game are vertices of the
polytope of the correlated equilibria. Two other correlated equilibra are shown (C1, C2).

of the (CE) polytope; e.g., it is easy to see that any game with integer utilities that has
only irrational NASH equilibria must be of this sort.

2.7.2 Correlated Equilibria in Succinct Games

But as we observed in Section 2.5, polynomial-time algorithms whose input is a
game, such as the linear programming algorithm for finding correlated equilibria,
make a mockery of complexity theory when the number of players is reasonably high.
This brings us to the following important question: Can we find correlated equilibria
efficiently when the game is represented succinctly?

There are some very interesting — and very natural — “learning” algorithms for ap-
proximating correlated equilibria, reviewed in Chapter 4 of this book. These algorithms
work by simulating repeated play of the game, in which the various players change
their strategies according to how much they “regret” previous decisions. Certain so-
phisticated ways of doing this are guaranteed to reach a point that is quite close to
the (CE) polytope. To arrive at a distance €, from the (CE) polytope, e% iterations are
required, where ¢ is some small constant depending on the particular method. But the
question remains, can we find a point of the (CE) polytope in polynomial time?

Recently, there have been some interesting results on this question; to state them we
need to introduce some definitions. We say that a succinctly representable game is of
polynomial type if the number of players, as well as the number of strategies of each
player, in a game represented by a string of length # is always bounded by a polynomial
in n. For such a game, the expected utility problem is this: Calculate the expected utility
of each player, if for each player i the given mixed strategy p' played. It turns out



CONCLUDING REMARKS 49

that solving this problem is enough for the correlated equilibrium problem to be
solved:

Theorem 2.6 (Papadimitriou, 2005) [n any succinctly representable game of
polynomial type for which the expected utility problem can be solved in polynomial
time, the problem of finding a correlated equilibrium can be solved in polynomial
time as well. Consequently, there is a polynomial-time algorithm (polynomial in
the length of the description of the game) for finding a correlated equilibrium
in sparse, symmetric, anonymous, graphical, congestion, local effect, facility
location, and multimatrix games (among many others, recall the definitions in
Section 2.5).

But how about the slightly more demanding problem of finding, not just any corre-
lated equilibrium, but the one that optimizes a given linear objective of the probabilities?
A much less sweeping result is available here.

Theorem 2.7 (Papadimitriou and Roughgarden, 2005) The problem of opti-
mizing a linear function over correlated equilibria can be solved in polynomial
time for symmetric games, anonymous games, and graphical games for which the
underlying graph is of bounded treewidth.

In contrast, it is NP-hard to find the optimum-correlated equilibrium in gen-
eral graphical games and congestion games, among others (Papadimitriou and
Roughgarden, 2005).

2.8 Concluding Remarks

The computational complexity of equilibrium concepts deserves a central place in
game theoretic discourse. The proof, outlined in this chapter, that finding a mixed
NasH equilibrium is PPAD-complete raises some interesting questions regarding the
usefulness of the NAsH equilibrium, and helps focus our interest in alternative notions
(most interesting among them the approximate NAsH equilibrium discussed in the end
of Section 2.6).

But there are many counterarguments to the importance of such a negative com-
plexity result. It only shows that it is hard to find a NaSH equilibrium in some very
far-fetched, artificial games that happen to encode Brouwer functions. Of what rele-
vance can such a result be to economic practice?

The same can be said (and has been said, in the early days) about the NP-
completeness of the traveling salesman problem, for example. And the answer remains
the same: The PPAD-completeness of NASH suggests that any approach to finding
NAsH equibria that aspires to be efficient, as well as any proposal for using the concept
in an applied setting, should explicitly take advantage of computationally beneficial
special properties of the games in hand, by proving positive algorithmic results for
interesting classes of games. On the other hand (as has often been the case with NP-
completeness, and as it has started to happen here as well; Abbott et al., 2005; Codenotti



50 THE COMPLEXITY OF FINDING NASH EQUILIBRIA

et al., 2006), PPAD-completeness proofs will be eventually refined to cover simpler
and more realistic-looking classes of games. And then researchers will strive to identify
even simpler classes.

An intractability result such as the one outlined in this chapter should be most
usefully seen as the opening move in an interesting game.

Acknowledgment

Many thanks to Bernhard von Stengel for several useful suggestions.

Bibliography

T. Abbott, D. Kane, and P. Valiant. On the complexity of two-player win-lose games. Proc. 2005
FOCS.

R.J. Aumann. Subjectivity and correlation in randomized strategies. J. Math. Econ., 1:67-96, 1974.

P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, and T. Pitassi. The relative complexity of NP search
problems. J. Comput. Syst. Sci., 57(1):13—-19, 1998.

X. Chen and X. Deng. 3-NASH is PPAD-Complete. Electronic Colloquium on Computational Com-
plexity, 134, 2005a.

X. Chen and X. Deng. Settling the complexity of 2-player Nash-equilibrium. Electronic Colloquium
on Computational Complexity, 134, 2005b; Fdns. Comp. 2006, to appear.

X. Chen, X. Deng, and S. Teng. Computing Nash equilibria: Aprroximation and smoothed complexity.
FOCS 2006, pp. 603-612, 2006.

B. Codenotti, M. Leoncini, and G. Resta. Efficient computation of Nash equilibria for very sparse
win-lose games. Electronic Colloquium on Computational Complexity, 12, 2006.

V. Conitzer and T. Sandholm. Complexity results about Nash equilibria. In: Proc. 18th Int. Joint Conf.
Artificial Intelligence, pp. 765-771, 2003.

C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The complexity of computing a Nash equi-
librium. Symp. on Theory of Computing, 2006, pp. 71-78.

C. Daskalakis, A. Mehta, and C.H. Papadimitriou. A note on approximate Nash equilibria. In:
Proc. 2006 Workshop on Internet Network Economics, in press.

C. Daskalakis and C.H. Papadimitriou. Three-player Games are Hard. Electronic Colloquium on
Computational Complexity, 139, 2005.

F.S. Evangelista and T.E.S. Raghavan. A note on correlated equilibrium. Intl. J. Game Theory,
25(1):35-41, 2005.

D. Gale, H-W. Kuhn, and A.W. Tucker. On symmetric games. In: H.-W. Kuhn and A.W. Tucker,
editors, Contributions to the Theory Games, 1:81-87. Princeton University Press, 1950.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, 1979.

I. Gilboa and E. Zemel. Nash and correlated equilibria: Some complexity considerations. Games
Econ. Behav., 1989.

P.W. Goldberg and C.H. Papadimitriou. Reducibility between equilibrium problems. Symp. on Theory
of Computing, 2006, pp. 62-70.

S. Hart and D. Schmeidler. Existence of correlated equilibria. Math. Operat. Res., 14(1):18-25, 1989.

M. Hirsch, C.H. Papadimitriou, and S. Vavasis. Exponential lower bounds for finding brouwer
fixpoints. J. Complexity, 5:379-416, 1989.

D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search? J. Comput. Syst.
Sci., 37(1):79-100, 1988.



BIBLIOGRAPHY 51

M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. In: Proc. Conf. on Uncer-
tainty in Artificial Intelligence, 2001, pp. 253-260.

K. Leyton-Brown and M. Tennenholtz. Local-effect games. Intl. Joint Conf. Artificial Intelligence,
2003, pp. 772-780.

R.J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. ACM Electronic
Commerce, 2003, pp. 36-41.

J. Nash. Noncooperative games. Ann. Math., 54:289-295, 1951.

C.H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence.
J. Comput. Syst. Sci., 48(3):498-532, 1994.

C.H. Papadimitriou. Computing correlated equilibria in multi-player games. Symp. on Theory of
Computing, 2005, pp. 49-56.

C.H. Papadimitriou and T. Roughgarden. Computing equilibria in multi-player games. Symp. on
Discrete Algorithms, 2005, pp. 82-91.

R. Savani and B. von Stengel. Exponentially many steps for finding a Nash equilibrium in a Bimatrix
Game. Proc. of 45th Fdns. on Comp. Science, pp. 258-267, 2004.

B. von Stengel. Computing equilibria for two-person games. Handbook of Game Theory with Eco-
nomic Applications, Vol. 3, R. J. Aumann and S. Hart, eds. Elsevier, Amsterdam, pp. 1723-1759,
2002.



